K’th Smallest/Largest Element in Unsorted Array - cook the code

Saturday 27 January 2018

K’th Smallest/Largest Element in Unsorted Array

K’th Smallest/Largest Element in Unsorted Array 

Given an array and a number k where k is smaller than size of array, we need to find the k’th smallest element in the given array. It is given that ll array elements are distinct.
Examples:
Input: arr[] = {7, 10, 4, 3, 20, 15}
       k = 3
Output: 7

Input: arr[] = {7, 10, 4, 3, 20, 15}
       k = 4
Output: 10
Method 1 (Simple Solution) 
A Simple Solution is to sort the given array using a O(nlogn) sorting algorithm like Merge SortHeap Sort, etc and return the element at index k-1 in the sorted array. Time Complexity of this solution is O(nLogn).
int kthSmallest(int arr[], int n, int k)
{
    // Sort the given array
    sort(arr, arr+n);
    // Return k'th element in the sorted array
    return arr[k-1];
}
Method 2 (Using Min Heap – HeapSelect)

We can find k’th smallest element in time complexity better than O(nLogn). A simple optomization is to create a Min Heap of the given n elements and call extractMin() k times.
The following is C++ implementation of above method.

class MinHeap
{
    int *harr; // pointer to array of elements in heap
    int capacity; // maximum possible size of min heap
    int heap_size; // Current number of elements in min heap
public:
    MinHeap(int a[], int size); // Constructor
    void MinHeapify(int i);  //To minheapify subtree rooted with index i
    int parent(int i) { return (i-1)/2; }
    int left(int i) { return (2*i + 1); }
    int right(int i) { return (2*i + 2); }
    int extractMin();  // extracts root (minimum) element
    int getMin() { return harr[0]; } // Returns minimum
};


MinHeap::MinHeap(int a[], int size)
{
    heap_size = size;
    harr = a;  // store address of array
    int i = (heap_size - 1)/2;
    while (i >= 0)
    {
        MinHeapify(i);
        i--;
    }
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin()
{
    if (heap_size == 0)
        return INT_MAX;
    // Store the minimum vakue.
    int root = harr[0];
    // If there are more than 1 items, move the last item to root
    // and call heapify.
    if (heap_size > 1)
    {
        harr[0] = harr[heap_size-1];
        MinHeapify(0);
    }
    heap_size--;
    return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
    int l = left(i);
    int r = right(i);
    int smallest = i;
    if (l < heap_size && harr[l] < harr[i])
        smallest = l;
    if (r < heap_size && harr[r] < harr[smallest])
        smallest = r;
    if (smallest != i)
    {
        swap(&harr[i], &harr[smallest]);
        MinHeapify(smallest);
    }
}
// A utility function to swap two elements
void swap(int *x, int *y)
{
    int temp = *x;
    *x = *y;
    *y = temp;
}
// Function to return k'th smallest element in a given array
int kthSmallest(int arr[], int n, int k)
{
    // Build a heap of n elements: O(n) time
    MinHeap mh(arr, n);
    // Do extract min (k-1) times
    for (int i=0; i<k-1; i++)
        mh.extractMin();
    // Return root
    return mh.getMin();
}
Time complexity of this solution is O(n + kLogn).
Method 3 (Using Max-Heap)
We can also use Max Heap for finding the k’th smallest element. Following is algorithm.
1) Build a Max-Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)
2) For each element, after the k’th element (arr[k] to arr[n-1]), compare it with root of MH.
……a) If the element is less than the root then make it root and call heapify for MH
……b) Else ignore it.
// The step 2 is O((n-k)*logk)
3) Finally, root of the MH is the kth smallest element.
Time complexity of this solution is O(k + (n-k)*Logk)
class MaxHeap
{
    int *harr; // pointer to array of elements in heap
    int capacity; // maximum possible size of max heap
    int heap_size; // Current number of elements in max heap
public:
    MaxHeap(int a[], int size); // Constructor
    void maxHeapify(int i);  //To maxHeapify subtree rooted with index i
    int parent(int i) { return (i-1)/2; }
    int left(int i) { return (2*i + 1); }
    int right(int i) { return (2*i + 2); }
    int extractMax();  // extracts root (maximum) element
    int getMax() { return harr[0]; } // Returns maximum
    // to replace root with new node x and heapify() new root
    void replaceMax(int x) { harr[0] = x;  maxHeapify(0); }
};


MaxHeap::MaxHeap(int a[], int size)
{
    heap_size = size;
    harr = a;  // store address of array
    int i = (heap_size - 1)/2;
    while (i >= 0)
    {
        maxHeapify(i);
        i--;
    }
}
// Method to remove maximum element (or root) from max heap
int MaxHeap::extractMax()
{
    if (heap_size == 0)
        return INT_MAX;
    // Store the maximum vakue.
    int root = harr[0];
    // If there are more than 1 items, move the last item to root
    // and call heapify.
    if (heap_size > 1)
    {
        harr[0] = harr[heap_size-1];
        maxHeapify(0);
    }
    heap_size--;
    return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MaxHeap::maxHeapify(int i)
{
    int l = left(i);
    int r = right(i);
    int largest = i;
    if (l < heap_size && harr[l] > harr[i])
        largest = l;
    if (r < heap_size && harr[r] > harr[largest])
        largest = r;
    if (largest != i)
    {
        swap(&harr[i], &harr[largest]);
        maxHeapify(largest);
    }
}

int kthSmallest(int arr[], int n, int k)
{
    // Build a heap of first k elements: O(k) time
    MaxHeap mh(arr, k);
    // Process remaining n-k elements.  If current element is
    // smaller than root, replace root with current element
    for (int i=k; i<n; i++)
        if (arr[i] < mh.getMax())
           mh.replaceMax(arr[i]);
    // Return root
    return mh.getMax();
}


3 comments:

Post a Comment