K’th Smallest/Largest Element in Unsorted Array
Given an array and a number k where k is smaller than size of array, we need to find the k’th smallest element in the given array. It is given that ll array elements are distinct.
Examples:
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10
A Simple Solution is to sort the given array using a O(nlogn) sorting algorithm like Merge Sort, Heap Sort, etc and return the element at index k-1 in the sorted array. Time Complexity of this solution is O(nLogn).
int
kthSmallest(
int
arr[],
int
n,
int
k)
{
// Sort the given array
sort(arr, arr+n);
// Return k'th element in the sorted array
return
arr[k-1];
}
Method 2 (Using Min Heap – HeapSelect)
We can find k’th smallest element in time complexity better than O(nLogn). A simple optomization is to create a Min Heap of the given n elements and call extractMin() k times.
The following is C++ implementation of above method.
class
MinHeap
{
int
*harr;
// pointer to array of elements in heap
int
capacity;
// maximum possible size of min heap
int
heap_size;
// Current number of elements in min heap
public
:
MinHeap(
int
a[],
int
size);
// Constructor
void
MinHeapify(
int
i);
//To minheapify subtree rooted with index i
int
parent(
int
i) {
return
(i-1)/2; }
int
left(
int
i) {
return
(2*i + 1); }
int
right(
int
i) {
return
(2*i + 2); }
int
extractMin();
// extracts root (minimum) element
int
getMin() {
return
harr[0]; }
// Returns minimum
};
MinHeap::MinHeap(
int
a[],
int
size)
{
heap_size = size;
harr = a;
// store address of array
int
i = (heap_size - 1)/2;
while
(i >= 0)
{
MinHeapify(i);
i--;
}
}
// Method to remove minimum element (or root) from min heap
int
MinHeap::extractMin()
{
if
(heap_size == 0)
return
INT_MAX;
// Store the minimum vakue.
int
root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if
(heap_size > 1)
{
harr[0] = harr[heap_size-1];
MinHeapify(0);
}
heap_size--;
return
root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void
MinHeap::MinHeapify(
int
i)
{
int
l = left(i);
int
r = right(i);
int
smallest = i;
if
(l < heap_size && harr[l] < harr[i])
smallest = l;
if
(r < heap_size && harr[r] < harr[smallest])
smallest = r;
if
(smallest != i)
{
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void
swap(
int
*x,
int
*y)
{
int
temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th smallest element in a given array
int
kthSmallest(
int
arr[],
int
n,
int
k)
{
// Build a heap of n elements: O(n) time
MinHeap mh(arr, n);
// Do extract min (k-1) times
for
(
int
i=0; i<k-1; i++)
mh.extractMin();
// Return root
return
mh.getMin();
}
Time complexity of this solution is O(n + kLogn).
Method 3 (Using Max-Heap)
We can also use Max Heap for finding the k’th smallest element. Following is algorithm.
1) Build a Max-Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)
2) For each element, after the k’th element (arr[k] to arr[n-1]), compare it with root of MH.
……a) If the element is less than the root then make it root and call heapify for MH
……b) Else ignore it.
// The step 2 is O((n-k)*logk)
3) Finally, root of the MH is the kth smallest element.
Time complexity of this solution is O(k + (n-k)*Logk)
class
MaxHeap
{
int
*harr;
// pointer to array of elements in heap
int
capacity;
// maximum possible size of max heap
int
heap_size;
// Current number of elements in max heap
public
:
MaxHeap(
int
a[],
int
size);
// Constructor
void
maxHeapify(
int
i);
//To maxHeapify subtree rooted with index i
int
parent(
int
i) {
return
(i-1)/2; }
int
left(
int
i) {
return
(2*i + 1); }
int
right(
int
i) {
return
(2*i + 2); }
int
extractMax();
// extracts root (maximum) element
int
getMax() {
return
harr[0]; }
// Returns maximum
// to replace root with new node x and heapify() new root
void
replaceMax(
int
x) { harr[0] = x; maxHeapify(0); }
};
MaxHeap::MaxHeap(
int
a[],
int
size)
{
heap_size = size;
harr = a;
// store address of array
int
i = (heap_size - 1)/2;
while
(i >= 0)
{
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int
MaxHeap::extractMax()
{
if
(heap_size == 0)
return
INT_MAX;
// Store the maximum vakue.
int
root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if
(heap_size > 1)
{
harr[0] = harr[heap_size-1];
maxHeapify(0);
}
heap_size--;
return
root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void
MaxHeap::maxHeapify(
int
i)
{
int
l = left(i);
int
r = right(i);
int
largest = i;
if
(l < heap_size && harr[l] > harr[i])
largest = l;
if
(r < heap_size && harr[r] > harr[largest])
largest = r;
if
(largest != i)
{
swap(&harr[i], &harr[largest]);
maxHeapify(largest);
}
}
int
kthSmallest(
int
arr[],
int
n,
int
k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for
(
int
i=k; i<n; i++)
if
(arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return
mh.getMax();
}
3 comments:
Nice informative content. Thanks for sharing such worthy information.
Spoken English Classes in Chennai
Best Spoken English Classes in Chennai
Spoken English Course Online
Spoken English Classes in Coimbatore
Thank you for the useful information. Share more updates.
Irregular Verbs
Auxiliary verbs
Wonderful Blog post!!! I am more impressed with your data.
Machine Learning Training in Chennai
Best Machine Learning Course Online
Machine Learning Certification
Post a Comment