Modular Exponentiation (Power in Modular Arithmetic) - cook the code

Tuesday, 19 September 2017

Modular Exponentiation (Power in Modular Arithmetic)

Modular Exponentiation (Power in Modular Arithmetic)

Given three numbers x, y and p, compute (xy) % p.
Examples
Input:  x = 2, y = 3, p = 5
Output: 3
Explanation: 2^3 % 5 = 8 % 5 = 3.

Input:  x = 2, y = 5, p = 13
Output: 6
Explanation: 2^5 % 13 = 32 % 13 = 6.
 

We have discussed recursive and iterative solutions for power.

Below is discussed iterative solution.
/* Iterative Function to calculate (x^y) in O(log y) */
int power(int x, unsigned int y)
{
    int res = 1;     // Initialize result
  
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = res*x;
  
        // n must be even now
        y = y>>1; // y = y/2
        x = x*x;  // Change x to x^2
    }
    return res;
}
The problem with above solutions is, overflow may occur for large value of n or x. Therefore, power is generally evaluated under modulo of a large number.
Below is the fundamental modular property that is used for efficiently computing power under modular arithmetic.
(a mod p) (b mod p) ≡  (ab) mod p

or equivalently 

( (a mod p) (b mod p) ) mod p  =  (ab) mod p

For example a = 50,  b = 100, p = 13
50  mod 13  = 11
100 mod 13  = 9

11*9 ≡ 1500 mod 13
or 
11*9 mod 13 = 1500 mod 13
Below is C implementation based on above property.
// Iterative C program to compute modular power
#include <stdio.h>
 
/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(int x, unsigned int y, int p)
{
    int res = 1;      // Initialize result
 
    x = x % p;  // Update x if it is more than or
                // equal to p
 
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res*x) % p;
 
        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p; 
    }
    return res;
}
 
// Driver program to test above functions
int main()
{
   int x = 2;
   int y = 5;
   int p = 13;
   printf("Power is %u", power(x, y, p));
   return 0;
}
Output:
 Power is 6
Time Complexity of above solution is O(Log y).

No comments:

Post a Comment